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The curvature of amorphous metallic ribbons 
interpreted with a homogeneous quenching 
model 

F. VARRET,  G. LE GAL, M. HENRY 
Laboratoire de Spectromgtrie Mossbauer UA-CNRS No. 807, Facult# des Sciences, 
F72017 Le Mans Cedex, France 

To explain the curvature of metallic ribbons obtained by quenching techniques, a model is 
developed in terms of isothermal planar layers, and a well defined solidification plane. Both 
the cooling rate and the thermal gradient are taken to be constant. Assuming that the ribbon 
can shrink but not bend during solidification, the resulting curvature is calculated, and is 
found to equal the thermal gradient multiplied by the linear thermal expansion coefficient. 
The obtained values compare well with the experimental data. The case of a non-constant 
thermal gradient is also considered, from a qualitative point of view. 

1. I n t r o d u c t i o n  
Metallic amorphous ribbons, obtained either by melt- 
spinning (narrow ribbons) or by planar-flow casting 
(wide ribbons), exhibit a sizeable curvature [1-4] with 
concavity towards their "shiny" side, i.e. their open 
face (Fig. 1). 

The basic reason for this curvature is that successive 
layers of the ribbon solidify at different times: on the 
two-layer scheme of Fig. 2, the system returns to room 
temperature with a lower layer initially colder than the 
upper layer. This differential effect thus results in a 
curvature of the two-layer system which is proportional 
both to the linear thermal expansion coefficient of the 
material, %, and to the initial difference of temperature. 

2. E x p e r i m e n t a l  da ta  
Generally, the major curvature is observed in the 
cross-section plane (Fig. 1); the measurement of this 
major curvature in the case of narrow ribbons requires 
the use of a sophisticated roughness meter [5], whereas 
the measurement of  the other curvatures can be made 
by simple optical means. Our previous studies [3, 4] on 
a narrow ribbon dealt with the minor curvature. 
Available experimental data are summarized in 
Table I. 

The occurrence of  the major curvature in the ZO Y 
plane can be explained by an earlier solidification of  
the edges (see also [5]), due to a higher cooling rate [6], 
which induces additionaI compressive stresses (see 
Fig. 3). 

There is also good experimental evidence that the 
quenching process is far from homogeneous [7]. 

(i) The observed Curie temperature distribution, in 
the as-quenched state, has been explained by a distri- 
bution in the glass temperature Tg whose width should 
be near 100K in a narrow ribbon [8]; in such a case, 
thickness irregularities, correlated with magnetic tex- 
ture have revealed that transient thermal gradients in 
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the "puddle" could be a major source ofinhomogeneity 
in the solidification process [5]; the liquid "'puddle" is 
schematized on Fig. 4. 

(it) The reversal of curvature after annealing [3, 4] 
showed that structural relaxation occurred inhorno- 
geneously; this was explained by a glass temperature 
Tg (and a cooling rate 7 ~ - dT/dt) which decreases 
across the ribbon thickness, from the substrate to the 
open face. 

The thermal gradients corresponding to (i) and (it) 
are referred to as "local" and "average", respectively. 

A model for inhomogeneous quenching requires a 
knowledge of the dependence of the glass temperature 

on the cooling rate 7 ~, So far this crucial function 
~(J~) is not quantitatively known; so, we develop 
here a simple homogeneous model considering T to be 
constant (i.e. taking an average T). 

Additional assumptions are needed for the behaviour 
of the solid layers on which the next layer freezes, fi'ee 
fi'om stresses. Here we assume that the ribbon remains 
flat while freezing; this rigorously occurs if the thermal 
gradient remains constant during the whole solidifi- 
cation process; stresses responsible for curvature 
appear later, as the solid ribbon returns to room 
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Fi,k, ure 1 Typical shapes of as-quenched ribbons, prepared with 
(left) melt-spinning and (right) planar flow technique (the vertical 
scale is enlarged). The open face ("shiny side") is upwards, and the 
substrate velocity along the X axis. 
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Figure 2 Classical glass formation scheme (volume plotted against 
temperature), adapted to a two-layer system; the liquid and the 
glassy states are represented by open and hatched areas, respectively. 
Stresses occur in the (b) ~ (c) path, when both layers are solid and 
undergo different temperature variations. 

temperature, with temperature variations differing 
from layer to layer• 

Additional factors acting to maintain the ribbon flat 
during solidification are the lack of room in the 
planar-flow casting (Fig. 5) and the weight of  the 
puddle in the melt-spinning technique• We also assume 
that the ribbon does not stick on the substrate, so that 
there are no tensile stresses due to the substrate. 

This picture is finally equivalent to a two-step 
process for releasing the thermal stresses of the system: 
the resulting force is permanently released during 
solidification; the resulting torque is released after 
total solidification (then the ribbon bends). 

3. A model for homogeneous 
solidification 

The "local" variation of the thermal gradient is 
neglected, and we consider a solidification plane 
moving at a constant velocity ,~g along the z coordinate 
perpendicular to the substrate. This velocity ~ is 
assumed to be small with respect to the substrate 
velocity (this will be verified in Section 4), so that the 
problem can be approximately treated in terms of 
isothermal planar layers parallel to the substrate. 

In addition, we assume in the present section that 
the "average" variation of the thermal gradient is also 

T A B L E I Curvature data on as-quenched metallic ribbons, measured in ZOX, ZO Y planes 

(a) -'- :- (b) 

Figure 3 Possible configurations of a bent ribbon after homogeneous 
quenching: (a) (b) stable equienergetic cylindrical shapes, (c) unstable 
spherical shape; earlier solidification of the edges (hatched areas) 
generates compressive stresses whose release favours the shape a. 

negligible; for simplicity, we assume that this also 
applies to the cooling rate so that VT = c~T/c?z and 

= OT/& are both taken to be constant• The tem- 
perature at position z and time t can then be written 

T(z,  t) = T O + V T z  + jgt (1) 

with V T  > O and J" < 0. 
Solidification occurs at position Zg(t) such that 

T(z,  t) = T~ which alternatively leads to 

Zg(t) = ( ~ -  T o -  T t ) / V T  (2) 

t (z) = - To - VTz)/  (3)  

The solidification plane moves at velocity 

÷ = d G ( t ) / d t  = - ( 7 7 V T )  > 0 (4) ~ g  

Once solidified, any layer starts shrinking according 
to the linear thermal coefficient .%, and has length 

l(z,  t)  = [(Z, tg(Z))[l q- .gg(T --  Tg)] (5) 

The temperature difference written here is only due 
to the time variation, so that 

T -  : 

and consequently 

l(z, t) = l(z, tg(z))(l + %i/'(t - tg(Z))) (5a) 

For convenience, this can be rewritten, using 
Equation 4, as a function of the distance to the solidifi- 
cation plane 

l(z, t) = l(z, t g ( Z ) ) [ ]  - -  ~ g V T ( z  - -  Z g ( t ) ) ]  (5b) 

The unknown function l(z, tg(Z)) = /g(_7), represents 
the length of layer z when it freezes, free from stresses. 
The determination of this function is the aim of the 
remaining calculations. For this we assume, as pre- 
viously stated, that the resulting force of  the thermal 
stresses is permanently released so that the solid layers 
have an average length which is also the length of the 
next solid layer which solidifies, free from stresses 

l~(z) : 1_ f~ l(z' ,  t~(z))dz" 

- } j~ lg(z')[l + % V Y ( z ' - z ) ] d z '  (6) 

Composition Origin Width (mm) Thickness (#m) R~ j (m ~) R~; I (m r) 

FeT~ 5Cr, 5 P~3 _, C7. s Compagnie 2 40 0.06( 1)" 40 b 
St Gobain 

Fe40 Ni3, ~ Mo 4 f3 is Allied Corp. 25 30 ~ 0 13 (1)~ 
"2826MB" 

~'[4]. 
b[9]. 
'Measured by mechanical means. 
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FiA, ure 4 Idealized view of the "'puddle" in the melt-spinning devices 
(with enlarged thickness of the ribbon), adapted from [1]. Typical 
values for d, L. e are 0.8, 2.5, 0 .040mm, respectively. 

This integral equation can be solved using a serial 
development, leading to 

l~(z) = /0{1 - % V T z  + ( % V T ) 2 ( z 2 / 4 )  + . . . ]  (7) 

where l0 is an integration constant representing the 
length of the bot tom layer. The return of the ribbon to 
room temperature introduces a small correction, 
equal for all layers since they undergo the same tem- 
perature change from ~ to T,.oo,,,. 

Thus Equation 7 represents the free length of the 
layers. It explains the cylindrical shape of the ribbon 
(with O X  axis): in the cross-section plane, this shape 
fits Equation 7 up to the first-order term and allows 
the stresses to be entirely released. The radius R of the 
cylinder is such that 

( l(z)  -- l(0))/l(0) = z / R  

A comparison with Equation 7 immediately yields the 
curvature 

1/R = %VT (8) 

which appears to be independent of  the ribbon width 
and thickness. 

4. Analys i s  of  e x p e r i m e n t a l  data  
The available data, collected in Table 1, allows the 
determination of the thermal gradient, using Equation 
8 and data for the linear thermal expansion coefficient 
% ~ 1.6 x 10 ~K }, which is close to that of crystal- 
line iron and nickel, respectively 1.5 and 1.7 x 10 5 K 

VT ~ 2.7 × 10 ('km t for the narrow ribbon 

VT ~ 8.1 × 105km ~ for the wide ribbon 

Across a thickness e, this leads to a temperature 
difference between the two sides which is 

a T  = e V T  ~ 100K for the narrow ribbon 

24K for the wide ribbon. 

For further analysis more data is required, in par- 
ticular the "crossing time" t~, needed for the solidifi- 
cation plane to cross through the whole thickness. 
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Figure 5 Idealized view of a quenching device (planar flow), with a 
ribbon which remains flat while freezing, and bends later on. 

From a simple observation of the melt spinning 
device while operating [1], one can observe a "puddle 
length" L (Fig. 4) of  ~ 2.5 mm. Together with the 
substrate velocity V ~ 30msec ~ and the thickness 
e ~ 40#m, this leads to 

tc ~ L / V  = 8.3 x 10-~sec 

2g = e/t~ ~ 0.48msec 

In the absence of similar data concerning the wide 
ribbon, we shall assume that the velocity of  the solidi- 
fication plane has the same value; this is reasonable 
since this velocity only depends on the heat transfer 
coefficient from the substrate, irrespective of the sub- 
strate velocity and other quenching parameters. Indeed 
this value is quite small compared with the substrate 
velocity (as required previously). From Equation 4 the 
calculations, summarized in Table II, finally yield 

T = ~ V T  ~ - 1 . 3  x l06 Ksec 

for the narrow ribbon 

- 0 . 4  x 106Ksec I for the wide ribbon. 

These values have the correct order of  magnitude, the 
values usually deduced from thermodynamical models 
being of some 106 Ksec ~. 

Structural relaxation, which is fast near T~, should 
tend to reduce the thermal stresses. It seems that it 
does not play an important role here; this supports the 
assumption made in Section 2, that the thermal stresses 
occur when the temperature is far below Tg (Fig. 6). 

On the other hand, using the present analysis, t h e  
inhomogeneous character of  the solidification can be 
qualitatively investigated; this is done in the next 
section. 

5. Inhomogeneous model 
The assumption made above that both V T and T are 
constant does not obey the well known heat-transfer 
equation 

Z A T -  Ci# = 0, 

where 2 and C are respectively the heat transfer coef- 
ficient and the heat capacity of  the material. In one 

T A B L E  11 Quenching parameters and data for explaining the major curvature of  as-quenched amorphous  metallic ribbons 

Composition R l ( m  L) % ( K  L) V Y ( K m  I) ~$T(K) 2~(msec l) 7~(Ksec i) 

F%2>Cr<,~P~2CT~ 40 1.5 x 10 ~ 2.7 × 10 <' 10W 0.48 1.3 × 10 ~' 

VeqoNi~.~Mo4Bl~ 13 1.6 × 10 ~ 8.1 x 10 ~ 24 (id) 0.4 x I0 ~' 
"'2826MB" 
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Figure 6 Schematic phase diagram for homogeneous glass formation. 
showing the thermal dilatations in liquid and glassy states 
(T~ glass temperature). The successive layers of the ribbon 
(hatched = glass) are shown at time :, moving to the left while the 
ribbon freezes. 

dimension, this equation can be written 

0-'T 
) . ~ -  CT = 0 (9) 

If if is assumed to be negative, this leads to a 
~.T/Oz = VT which is a decreasing function of ~. 
Consequently the crucial function lg(z) is expected to 
have a steeper variation near the substrate. As shown 
in Fig. 7, it is no longer possible to release completely 
the stresses, and the ribbon remains with both surfaces 
under compressive stresses (this is similar to the well 
known quenching effect of  glasses). 
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Figure 7 Stress distribution in the case of inhomogeneous quenching 
(full lines), compared to the case of  homogeneous quenching 
(broken lines): (a) depicts the situation of the ribbon returned to 
room temperature, but constrained to remain flat. (b) when the 
torque is released (the ribbon bends); (c) shows compressed and 
elongated areas, adapted from [3]. 

6. C o n c l u s i o n  
The present tentative model of  homogeneous quench- 
ing has explained the correct order of  magnitude for 
the curvature of  as-quenched ribbons. A more general 
model including structural relaxation and inhomo- 
geneous quenching rate is not necessary as long as 
accurate data concerning the thermodynamics of  the 
solidification are not available. 

The values of the temperature difference between 
the two sides during quenching, a T  ~ 100K and 
24 K, for the narrow and wide ribbon respectively, are 
of  the same order of magnitude as the glass- 
temperature gradients (100K, [8]) which can occur 
transiently in a melt-spinning device. In both ribbons 
the "local"gradients and the "average" gradients are 
both present; to separate these two effects, a detailed 
study of the structural relaxation during thermal 
annealing should combine "local" observations (such 
as cST~ measurements) and "average" observations 
(such as curvature measurements). 
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